speaker header

Christine E. Schmidt, PhD

University of Florida

Pruitt Family Professor and Chair

Christine E. Schmidt, PhD

About

Christine E. Schmidt is the Pruitt Family Professor and Department Chair of the J. Crayton Pruitt Family Department of Biomedical Engineering at the University of Florida. Dr. Schmidt received her B.S. degree in Chemical Engineering from the University of Texas at Austin in 1988 and her Ph.D. in Chemical Engineering from The University of Illinois at Urbana-Champaign in 1995. She conducted postdoctoral research at MIT as an NIH Postdoctoral Fellow, joining the University of Texas at Austin Chemical Engineering faculty in 1996. She was one of the founding faculty members of the Department of Biomedical Engineering at UT Austin, and was at UT Austin until December 2012, when she moved to become the Chair of Biomedical Engineering at the University of Florida. |Dr. Schmidt is a Fellow of the American Institute for Medical and Biological Engineering (AIMBE), the American Association for the Advancement of Science (AAAS), the Biomedical Engineering Society (BMES), and a Fellow of Biomaterials Science and Engineering (FBSE) of the International Union of Societies of Biomaterials Science and Engineering, She is the Deputy Editor-in-Chief of the Journal of Materials Chemistry B and serves on the Editorial Boards for Materials Horizons, Acta Biomaterialia, Journal of Biomedical Materials Research, Journal of Biomaterials Science, Polymer Edition, International Journal of Nanomedicine, and Nanomedicine. She has received numerous research, teaching, and advising awards, including the American Competitiveness and Innovation (ACI) Fellowship from NSF's Division of Materials Research, the Chairmen's Distinguished Life Sciences Award by the Christopher Columbus Fellowship Foundation and the U.S. Chamber of Commerce, a National Science Foundation CAREER Award, and a Whitaker Young Investigator Award. |Dr. Schmidt's research is focused on developing new biomaterials and biomaterial composites (e.g., natural material scaffolds, processed tissues, electronic polymer composites) that can be used to physically guide and stimulate regenerating nerves. In addition, her group is investigating neuron-electronic interfacing using electrically conducting polymers as a means to ultimately develop new bioprosthetics.