An anti-inflammatory drug delivery system based on Chitosan/Poly-(γ-Glutamic acid) nanoparticles to treat inflammation and degeneration of intervertebral disc: an ex vivo study

Graciosa Teixeira1,2,3, Ana Catarina L. Pereira1,3, Hans J. Wilke2, Anita Ignatius2, Mário A. Barbosa1,3, Cornelia Neidlinger-Wilke2, Raquel M Goncalves1

1Institute of Biomedical Engineering (INEB), Universidade do Porto, Portugal, 2Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm, Germany, 3Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Portugal

Statement of Purpose: Low back pain related with intervertebral disc (IVD) degeneration is a major cause of lack to work in industrialized countries. Inflammation has been correlated with disc degeneration, although its role in discogenic pain remains controversial [1]. Here we purpose first to establish a pro-inflammatory disc organ culture model. Our goal is to evaluate a new anti-inflammatory therapy based on Chitosan (Ch)/Poly-(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) with an anti-inflammatory drug (Diclofenac, Df) incorporated, previously developed by us [2]. Previous studies have shown that this delivery system was efficient in reducing macrophage activation in vitro [3].

Methods: A pro-inflammatory disc organ culture model was established. For that, bovine caudal disc punches cultures were needle-punctured and stimulated with: Lipopolysaccharide (LPS) 10 µg/mL, or with Interleukin-1β (IL-1β) (10 or 100 ng/mL) for 48h. The effect of the pro-inflammatory stimulus was evaluated by gene expression of pro-inflammatory cytokines (IL-6, IL-8, TNF-α), metalloproteases (MMPs, MMP1 and MMP3), and extracellular matrix (ECM) proteins (collagen type II (Coll II), Aggrecan). Cell viability was analyzed. Ch/Df/γ-PGA NPs, an anti-inflammatory drug delivery system, was prepared by co-acervation method [2], and were added to disc cultures. The effect of the anti-inflammatory therapy was evaluated by pro-inflammatory gene expression and by Prostaglandin E2 (PGE2) production. The effect of this therapy on ECM remodeling was also analyzed.

Results: LPS and IL-1β treatments were first compared in their ability to induce a pro-inflammatory status. IL-1β-treated discs showed a statistically significant up-regulation of the pro-inflammatory cytokines (IL-6 and IL-8), MMPs expression (MMP1 and MMP3), while ECM proteins (Coll II and Aggrecan) were significantly down-regulated (Fig.1). For all the conditions tested, cells remain viable and presented similar metabolic activity. IL-1β stimulation was selected as the most adequate approach to study anti-inflammatory therapies for IVD.

Regarding the effect of Df-NPs in the IVD organ cultures, the results showed that IL-6, MMP1 and Coll II were down-regulated when compared to IL-1β stimulated groups, suggesting that this treatment not only reduces inflammation, but also can delay and/or decrease matrix proteins degradation. PGE2 levels were reduced in the presence of Df-NPs for both IL-1β concentrations.

![Fig.1](image-url) Quantitative analysis of pro-inflammatory (a) and ECM (b) markers of IVD organ cultures with pro-inflammatory stimulus (LPS and IL-1β). mRNA expression of IL-6, IL-8, Coll II and Aggrecan Levels of mRNA were normalized to GAPDH and to the control group. GAGs (c) and Aggrecan (d) were quantified after treatment with DF-NPs.

We have compared the Df-NPs injection in IVD with Df-NPs in IVD culture medium. The results indicate that injection group induces a better response. ECM remodeling was observed after Df-NPs injection, with an increase in GAGs production, Coll II and Aggrecan expression.

Conclusions: An ex vivo model of degeneration and inflammation in IVD was here established, with increased levels of pro-inflammatory cytokines and MMPs and reduced ECM protein levels. Ch/Df/γ-PGA NPs revealed to be a promisor anti-inflammatory therapy to IVD with the capacity to remodel degenerated IVD ECM. This work opens new perspectives to intradiscal therapies.


Acknowledgements: COMPETE, FCT – Fundação para a Ciência e a Tecnologia, PEst-C/SAU/LA0002/2011. QREN, project NORTE-07-0124-FEDER-000005 co-financed by North Portugal Regional Operational (ON.2-O Novo Norte) and German Spine Foundation.